GO otterSec

Security Assessment

March 30th, 2024 — Prepared by OtterSec

Nicholas R. Putra

Robert Chen

Matteo Oliva

nicholas@osec.io

notdeghost@osec.io

matt@osec.io

mailto:nicholas@osec.io
mailto:notdeghost@osec.io
mailto:matt@osec.io

Table of Contents

Executive Summary
Overview
Key Findings
Scope

Findings

General Findings

0S-BOB-SUG-00 | Inconsistency In Address Flexibility

0OS-BOB-SUG-01 | Gas Limit Clarification
Appendices

Vulnerability Rating Scale

Procedure

© 2024 Otter Audits LLC. All Rights Reserved.

01— Executive Summary

Overview

Bob Collective engaged OtterSec to assess the fusion-lock program. This assessment was conducted
between March 18th and March 22nd, 2024. For more information on our auditing methodology, refer to
Appendix B.

Key Findings

We produced 2 findings throughout this audit engagement.

We recommended addressing the inadequate flexibility in bridge address configuration (OS-BOB-SUG-00)
and advised clarifying in the comment that the gas limit parameter applies to each withdrawal individually,
not to all withdrawals combined. This clarification would help avoid user confusion. (0S-BOB-SUG-01).

Scope

The source code was delivered to us in a Git repository at https://github.com/bob-collective/fusion-lock.
This audit was performed against commit e4f25ee.

A brief description of the programs is as follows:

Name Description

Facilitates the management of token deposits and withdrawals across
fusion-lock various blockchain layers, ensuring users maintain access to their funds
while fostering interoperability between them.

© 2024 Otter Audits LLC. All Rights Reserved. 2/8

https://github.com/bob-collective/fusion-lock
https://github.com/bob-collective/fusion-lock/commit/e4f25ee6302839deb30d5a96721a64610d36598c

02 — Findings

Overall, we reported 2 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

© 2024 Otter Audits LLC. All Rights Reserved.

Severity

CRITICAL
HIGH
MEDIUM
LOW
INFO

Count

3/8

03 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent anti-patterns and may result in security issues in the future.

ID Description

0S-BOB-SUG-00 The flexibility in bridge address configuration within FusionLock is insufficient.

Specify in withdrawSingleDepositToL2 thatthe minGasLimit parameter

0S-BOB-SUG-01 . - —
applies to each withdrawal individually.

© 2024 Otter Audits LLC. All Rights Reserved. 4/8

Bob Collective Audit 03 — General Findings

Inconsistency In Address Flexibility 0S-BOB-SUG-00

Description

In FusionLock , 12TokenAddress denotes the address of the corresponding token on layer two. This
address may be modified dynamically at any point, facilitating updates to accommodate alterations in the
token contract on layer two. This flexibility empowers the contract owner to adapt token mappings as
necessary, guaranteeing compatibility with any upgrades or migrations of token contracts on the layer
two network.

>_ FusionLock.sol solidity

function changeMultipleL2TokenAddresses(TokenAddressPair[] memory tokenPairs) external onlyOwner
- 1
for (uint256 i = 0; i < tokenPairs.length; i++) {
TokenAddressPair memory pair = tokenPairs[i];

require(allowedTokens[pair.llTokenAddress].isAllowed, "Need to allow token before
— changinglL2 address");

allowedTokens[pair.l1TokenAddress].1l2TokenAddress = pair.l2TokenAddress;
emit TokenL2DepositAddressChange(pair.llTokenAddress, pair.l2TokenAddress);

Conversely, 11BridgeAddressOverride serves as an optional override address for the bridge contract
used when bridging tokens to layer two. However, once set, this address cannot be modified during the
withdrawal period, remaining static until the withdrawal period concludes. This lack of flexibility restricts
the contract owner’s ability to adapt to changes in bridge contracts or transition to alternative bridge
implementations if necessary.

Remediation

Allow the 11BridgeAddressOverride field to be changed during the withdrawal period, mirroring the
behavior of 12TokenAddress .

Patch

Fixed in da35903.

© 2024 Otter Audits LLC. All Rights Reserved. 5/8

https://github.com/bob-collective/fusion-lock/commit/da359031f013b34f6504fc6462db9f78fd76ba57

Bob Collective Audit 03 — General Findings

Gas Limit Clarification 0S-BOB-SUG-01

Description

In the NatSpec for withdrawSingleDepositToL2 , the comment regarding minGasLimit should
clarify that this parameter sets the minimum gas limit for each withdrawal transaction. This ensures that
every withdrawal has sufficient gas to execute independently. Users must understand that the gas limit is
specific to each withdrawal rather than being shared among multiple withdrawals.

>_ FusionLock.sol solidity

function withdrawSingleDepositTolL2(address token, uint32 minGasLimit, address receiver) -internal
= {
Loool

Remediation

Modify the comment for minGasLimit as described above.

Patch

Fixed in 2db42bb.

© 2024 Otter Audits LLC. All Rights Reserved. 6/8

https://github.com/bob-collective/fusion-lock/commit/2db42bbe4545f8524ea7a1ad939ea38c1cc4aad7

A — Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.
Informational findings may be found in the General Findings.

CRITICAL

HIGH

MEDIUM

LOW

INFO

Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.
Examples:

« Misconfigured authority or access control validation.
» Improperly designed economic incentives leading to loss of funds.

Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.
Examples:

e Loss of funds requiring specific victim interactions.
« Exploitation involving high capital requirement with respect to payout.

Vulnerabilities that may result in denial of service scenarios or degraded usability.
Examples:

o Computational limit exhaustion through malicious input.
» Forced exceptions in the normal user flow.

Low probability vulnerabilities, which are still exploitable but require extenuating circumstances
or undue risk.

Examples:

« Oracle manipulation with large capital requirements and multiple transactions.

Best practices to mitigate future security risks. These are classified as general findings.
Examples:

« Explicit assertion of critical internal invariants.
« Improved input validation.

© 2024 Otter Audits LLC. All Rights Reserved. 718

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the program'’s implementation requires a deep understanding of the chain’s
execution model. While this varies from chain to chain, some common implementation vulnerabilities
include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strong understanding of the underlying system and the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,
we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,
picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2024 Otter Audits LLC. All Rights Reserved. 8/8

	Executive Summary
	Overview
	Key Findings
	Scope

	Findings
	General Findings
	[8.75em][l]OS-BOB-SUG-00 | Inconsistency In Address Flexibility
	[8.75em][l]OS-BOB-SUG-01 | Gas Limit Clarification

	Appendices
	Vulnerability Rating Scale
	Procedure

